60 v 1 1 6 Ju n 20 00 Blow - up for solutions of hyperbolic PDE and spacetime singularities

نویسنده

  • Alan D. Rendall
چکیده

An important question in mathematical relativity theory is that of the nature of spacetime singularities. The equations of general relativity, the Einstein equations, are essentially hyperbolic in nature and the study of spacetime singularities is naturally related to blow-up phenomena for nonlinear hyperbolic systems. These connections are explained and recent progress in applying the theory of hyperbolic equations in this field is presented. A direction which has turned out to be fruitful is that of constructing large families of solutions of the Einstein equations with singularities of a simple type by solving singular hyperbolic systems. Heuristic considerations indicate, however, that the generic case will be much more complicated and require different techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

A pr 2 00 7 A Simplified Mathematical Model for the Formation of Null Singularities Inside Black Holes I – Basic Formulation and a Conjecture February 7 , 2008

Einstein's equations are known to lead to the formation of black holes and spacetime singularities. This appears to be a manifestation of the mathematical phenomenon of finite-time blowup: a formation of singularities from regular initial data. We present a simple hyperbolic system of two semi-linear equations inspired by the Einstein equations. We explore a class of solutions to this system wh...

متن کامل

2 00 6 A Simplified Mathematical Model for the Formation of Null Singularities Inside Black Holes I February 9 , 2008

Einstein's equations are known to lead to the formation of black holes and spacetime singularities. This appears to be a manifestation of the mathematical phenomenon of finite-time blowup: a formation of singularities from regular initial data. We present a simple hyperbolic system of two semi-linear equations inspired by the Einstein equations. We explore a class of solutions to this system wh...

متن کامل

m at h . A P ] 2 3 Ju n 20 09 SELF - SIMILAR BLOW - UP IN PARABOLIC EQUATIONS OF MONGE – AMPÈRE TYPE

We use techniques from reaction-diffusion theory to study the blow-up and existence of solutions of the parabolic Monge–Ampère equation with power source, with the following basic 2D model (0.1) u t = −|D 2 u| + |u| p−1 u in R 2 × R + , where in two-dimensions |D 2 u| = u xx u yy − (u xy) 2 and p > 1 is a fixed exponent. For a class of " dominated concave " and compactly supported radial initia...

متن کامل

ar X iv : m at h - ph / 0 40 40 03 v 1 1 A pr 2 00 4 On Maslov Conjecture about Square Root Type Singular Solutions of the Shallow Water Equations ∗

About twenty years ago, V. P. Maslov [1] put forward the idea that numerous quasilinear hyperbolic systems have only finite number of singular solution in general position. These solutions are shock waves, “infinitely narrow” solitons and point singularities of the type of the square root of a quadratic form. He has also stated conjecture that such solutions for shallow water equation can descr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000